PEMBUATAN BAWANG PUTIH TANPA AROMA (Allium sativum L.) MENGGUNAKAN FERMENTASI DENGAN JAMUR TEMPE DAN UJI AKTIVITAS ANTIOKSIDANNYA
Rina Delfita dan Aidhya Irhash Putra
1Program Studi Biologi, Jurusan Tarbiyah, Sekolah Tinggi Agama Islam Negeri Batusangkar, Sumatera Barat, Indonesia
rdelfita@yahoo.com
ABSTRAK
Penelitian ini bertujuan untuk mendapatkan satu proses pembuatan bawang putih tanpa aroma dengan fermentasi menggunakan jamur tempe dan mendapatkan bawang putih tanpa aroma yang memiliki aktivitas antioksidan tinggi. Pembuatan bawang putih tanpa aroma dengan cara fermentasi menggunakan jamur tempe pada konsentrasi 5, 10 dan 15 % dan lama fermentasi yang berbeda (24, 48, 72, 96, dan 120 jam). Pengujian aroma dengan uji organoleptik. Pembuatan ekstrak bawang putih tanpa aroma dengan cara sentrifugasi. Aktivitas antioksidan bawang putih dengan metode DPPH. Proses pembuatan bawang putih tanpa aroma terdiri dari lima tahap. yaitu: Tahap 1: Menyiapkan bawang putih yang akan difermentasi. Bawang putih dikupas kulitnya kemudian dicuci dan direbus, lalu dihaluskan. Tahap 2. Pembuatan media pemicu pertumbuhan jamur tempe. Kacang kedelai dicuci lalu direndam, kemudian direbus, didinginkan, dibuang kulitnya, dan dikeringkan. Setelah itu dihaluskan. Tahap 3. Pencampuran hasil tahap 1 dan tahap 2. Pencampuran tahap 1 dan tahap 2, dengan perbandingan 20 gram bawang putih, 0,4 gram kacang kedelai, dan 20 mL aquades steril, lalu disterilisasi panas. Tahap 4. Penambahan jamur tempe ke dalam medium fermentasi. Tahap 5. Memfermentasikan bawang putih. Bawang putih tanpa aroma ditemukan setelah 72 jam fermentasi. Bawang putih tanpa aroma yang memiliki aktivitas antioksidan yang terbaik pada fermentasi dengan 15 % - 96 jam, yaitu 41.54 ± 3.84. Jadi, bawang putih tanpa aroma dapat dibuat dengan mudah dan cepat dengan cara fermentasi menggunakan jamur tempe. Bawang putih tanpa aroma berpotensi sebagai alternatif antioksidan alami dan dapat digunakan dalam bidang obat-obatan dan makanan.
Kata kunci: bawang putih tanpa aroma, Allium sativum, fermentasi, jamur tempe, aktivitas antioksidan
Full Text PDF
Lin, S., Zhu, Q., Wen, L., Yang, B., Jiang, G., Gao, H. 2014. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori.Food Chem: 145: 220-227.
>
DAFTAR PUSTAKA
Amagase, H., Brenda. L.P., Hiromichi, M., Shigeo ,K and Yoichi, I. 1998. Intake of garlic and its bioactive components. The proceedings at the conferences“Recent advances on the nutritional effects associated with use of garlic as s supplement”. November 15-17, 1998 in Newport Beach, CA: 955S-962S.
Ana L., Colın-Gonzalez., Ricardo A., Santana,Carlos A., Silva-Islas, Maria E., Chanez-Cardenas., Abel Santamarıa., and Perla D. Maldonado. 2012. Review Article The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection. Oxidative Medicine and Cellular Longevity Volume 2012: 1-16. Hindawi Publishing Corporation
Bae, Sang Eun., Seung Yong Cho, Yong Duk Won, Seon Ha Lee, Hyun Jin Park. 2014. Changes In S-Allyl Cysteine Contents And Phsicochemical Properties Of Black Garlic During Heat Treatment. LWT – Food Science And Technology, Vol. 55: 397-402.
Corzo-Martinez, M., Corzo, N., Villamiel, M. 2007. Biological properties of unions and garlic. Trends Food Sci. Technol, 18: 609-625.
Choi, I. S., Cha, H. S. and Lee, Y. S. 2014. Physicochemical and antioxidant Properties of Black garlic. Molecules, 19 : 16811-16823.
Cai, S., Wang, O., Wu, W., Zhu, S., Ji, B. 2011. Comparative Study of the Effects of Solid-State Fermentation with Three Filamentous Fungi on the Total Phenolics Content (TPC), Flavonoids, and Antioxidant Activities of Subfractions from Oats (Avena sativa L.). Jour. Agric. Chem, 60: 507-512.
Cheng, K-C., Wu, J-Y., Lin, J-T., Liu, W-H. 2013. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. Eur. Food. Res. Technol. Volume 236,(6): 1107-1113.
Cho K. M., Hong S.Y., Math R.K., Lee J. H., Kambiranda, D.M., Kim, J. M, 2009. Biotransformation of phenolics (isoflavones,flavanols and phenolic acids) during the fermentation of Bacillus pumilus HY1. Food Chem;114:413
Desai,H.G., Kairo, R. H. and Choksi, A. P. 1990. Effect of ginger and garlic on DNA content of gastric aspirate. Indian J. Med.Res. 92: 139-141.
Handoyo, T and N. Morita. 2006. Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus.international Journal of Food Properties: 9.347-355.
Huynh, N. T., Camp, J. V., Smagghe, G and Raes, K. 2014. Review Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci., 15(11), 19369-19388
Kakimoto, Masanori, Suzuki; Ayumi, Nishimoto, Shiraishi; Sumihiro, Itakura, Yoichi. Fermented garlic composition. Unitet States Patent No. 6,146,638. November 2000.
Lybarger, J.A., Gallagher, J.S., Pulver, D. W, Litwin, A., Brooks, S and Bernstein, I. L. 1982. Occupational asthma induced by inhalation and ingestion of garlic. J Allergic Clin. Immunol. 69: 448-454.
Lanzotti, V. 2006. Review The analysis of onion and garlic. Journal of Chromatography A, 1112: 3–22.
Lin, S., Zhu, Q., Wen, L., Yang, B., Jiang, G., Gao, H. 2014. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori.Food Chem: 145: 220-227.
Medina-Campos ON, Barrera D, Segoviano-Murillo S, Rocha D, Maldonado PD, Mendoza-Patiño N, Pedraza-Chaverri. 2007. S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK(1) cells of potassium dichromate-induced toxicity. J Food Chem Toxicol. 2007 Oct; 45(10):2030-9.
Mikell, J.R and Khan, I. A. 2012. Bioconcervation of 7-hydroxyflavanone: Isolation, Characterization and bioactivity evaluation of twenty-one phase I and Phase II microbial metabolites. Chem. Pharm. Bull, 60: 1139-1145.
Marvalin, C.,and Azerad, R. 2011. Microbial glukoronidation of polyphenols. J. Mol. Catal. B. Enzym, 73: 43-52.
Nwachukwu, I.D and E.F Asawalam. 2014. Evaluation of freshlypreparad juice from garlic (Allium sativum L.) as a biopesticide the maize weevil Sitiophilus zeamais (Motsch) (Coleoptera: Curculioniodae). Journal of plant protection. Vol. 54, No. 2.1-6
Park, S. H., Lee, H. Kim, S. H., Kim, Yong-Ro., Noh, S.H. 2014. Optimum conditions for S-allyl-(L)-cysteine accumulation in aged garlic by RSM. Food Science and Biotechnology, Vol 23 (3): 717-722.
Queiroz ,Y. S., Emília Y. Ishimoto, Deborah H.M. Bastos, Geni R. Sampaio, Elizabeth A.F.S. Torres. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chemistry. 115 (1), 1 : 371–374
Rashad M.M.M, , Abeer E. Mahmoud, Hala M. Abdou and Mohamed U. Nooman. 2011. Improvement of nutritional quality and antioxidantactivities of yeast fermented soybean curd residue. African Journal of Biotechnology Vol. 10(28), 5504-5513,
Reeve, V.E., M. Bosnic, E. Rozinova, and C. Boehm-Wilcox.1993. A garlic extract protects from ultraviolet B (280–320 nm) radiation-induced supression of contacthypersensitivity. Photochemistry and Photobiology 58(6): 813–817
Santhosha, S.G., Prakash Jamuna, S.N. Prabhavathi. 2014. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Bioscience. Volume 3: 59–74
Schmidt, C. G., Gonçalves, L. M., Prietto, L., Hackbart H.S., Furlong, E. B. 2014. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chemistry. 146 : 371–377.
Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270–276.
Yadav, G., Singh, A., Bhattacharya, P., Yufraj, J., Banerjee, R. 2013. Comaparative analysis of solid state bioprocessing and enzymatic treatment of finger millet for mobilization of bound phenolics. Bioprocess Biosyst. Eng. 36: 1563-1569.
Yu, J.; Vasanthan, T.; Temelli, F. 2001, Analysis of phenolic acids in barley by high-performance liquid chromatography. J. Agric. Food Chem. 49: 4352–4358